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Evasion Attacks and Countermeasures in Deep
Learning-Based Wi-Fi Gesture Recognition
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Abstract—Deep learning-based Wi-Fi sensing has received massive interest thanks to the prevalence of Wi-Fi technology. While deep
learning techniques provide promising results in Wi-Fi sensing, there are only very few studies on the vulnerabilities against Wi-Fi
ensing. In this paper, we studied evasion attacks against deep learning-based Wi-Fi sensing and the countermeasure and conducted
an extensive experimental evaluation using two publicly available datasets, namely SignFi and Widar. Accordingly, we proposed three
white-box and two black-box attacks and revealed that even with an undetectable power change, evasion attacks can achieve a
remarkable attack success rate (ASR) of 97.0% and 95.6% in white-box and black-box settings, respectively. These results highlight the
urgent need for countermeasures against evasion attacks in Wi-Fi sensing systems. We introduced adversarial training and
randomised smoothing, which notably improved the robustness of the Wi-Fi sensing model. The ASRs for white-box and black-box
attacks were reduced to a minimum of around 6% and 2%, respectively. Moreover, randomised smoothing also introduced certifiable
robustness, achieving 70.1% of samples certified for our model. The certification method provides an additional layer of reliability,
ensuring that the model’s performance remains consistent and predictable even under adversarial conditions.

Index Terms—Wi-Fi sensing, deep learning, adversarial attacks, adversarial training, randomised smoothing
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1 INTRODUCTION

Wi-Fi sensing has attracted considerable research interest
from academia and industry because Wi-Fi is widespread
and integrated into many consumer products, including
computers, smartphones, tablets, Fitbits, and smart home
appliances, to name but a few. Wi-Fi sensing encompasses
a broad range of applications, including large-scale move-
ments like human activity recognition [1], fall detection [2],
and person identification based on posture [3] and gait [4]
as well as small-scale motions like gesture recognition [5],
[6] and sign language recognition [7]. Gesture recognition
has emerged as an important application in Wi-Fi sens-
ing [8].

Wi-Fi sensing provides distinct advantages over camera-
based and wearable-based methods due to its non-intrusive
and privacy-preserving nature. Unlike cameras, which may
be unsuitable for private spaces [9] like bedrooms, Wi-Fi
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sensing enables applications such as gesture recognition,
fall detection, and activity monitoring while safeguarding
user privacy, even in low-light conditions where cameras
fail. Furthermore, compared to wearable-based systems,
Wi-Fi sensing eliminates the need for users to carry or
wear devices [9], making it particularly suitable for elder
care scenarios where continuous monitoring is essential
but compliance with wearable use may be inconsistent or
impractical [10].

Deep Neural Networks (DNNs) have been widely used
for Wi-Fi sensing gesture recognition, thanks to their excel-
lent feature extraction capability [5], [8], [11]. While DNN
has shown promising performance for Wi-Fi sensing re-
search, the security vulnerabilities of DNN models have be-
come a concern in recent years. In particular, evasion attacks
can mislead the DNN model to make a wrong prediction
in the inference phase with adversarial perturbations that
are applied to the model’s input [12], [13]. Initially studied
in the area of image classification [12], evasion attacks are
extensively studied in various computer vision areas, such
as object detection [14] and semantic segmentation [15].
Furthermore, the work in [16] highlights the application and
impact of these adversarial methods in broader domains,
including cybersecurity.

Evasion attacks have also been applied to Wi-Fi sensing,
although research in this domain is still in its early stages.
The latest works, such as [17] and [18], explored the evasion
attack with fast gradient sign method (FGSM) and projected
gradient descent (PGD). Their work primarily focused on
the impact of the attack on joint communication and attack
performance. However, they need to access the model input
and true label for adversarial sample generation. This may
not be practical in real-world scenarios. The authors in [19]
investigated the adversarial robustness of Wi-Fi sensing
model under evasion attacks and introduced adversarial
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training as countermeasures. However, adversarial training
may fail against attack methods that are never seen during
adversarial training.

In this paper, we systematically evaluate the impact
of evasion attacks on deep learning-based Wi-Fi gesture
recognition models as well as countermeasures. We conduct
a comprehensive analysis of various attack methods and
the adversarial robustness of Wi-Fi sensing models. Experi-
mental evaluations using SignFi [7] and Widar [5] datasets
demonstrate the effectiveness of our methods, offering a
robustness benchmark for Wi-Fi sensing models under eva-
sion attacks. In particular, in terms of the attack methods,
we explored both white-box and black-box attacks, using
different perturbation generation approaches.

• White-box attack: We utilised perturbation generation
methods like FGSM [20], PGD [21], and DeepFool [22].
We implemented both non-targeted (FGSM, PGD, and
DeepFool) and targeted (FGSM and PGD) strategies,
which notably achieved an attack success rate (ASR) of
up to 97% and 82%, respectively, with low perturbation-
to-signal ratio (PSR).

• Black-box attack: We employed universal adversarial
perturbation (UAP) [23] and exploited the transferabil-
ity of adversarial samples. We focused on the class-
invariant characteristics of Wi-Fi sensing samples and
achieved a peak ASR of 95.6% across various environ-
ments and models.

• Black-box attack: Additionally, we considered a more
practical scenario where the attacker is unaware of the
victim system’s information but can eavesdrop on all
sensing signals. The attacker uses an unsupervised k-
means clustering algorithm to construct pseudo-labels
to train a surrogate model and achieved an average
ASR of 80% in this challenging scenario.

Because evasion attacks show strong potential in attacking
deep learning-based gesture recognition systems, it is essen-
tial to design countermeasures. In this paper, we adopted
adversarial training [20] and randomised smoothing [24] to
bolster model robustness against these attacks.

• Defence by adversarial training: Adversarial training
significantly mitigated the impact of these attacks, re-
ducing the ASR to as low as 6% and 15.9% under FGSM
and PGD attacks, respectively. For the DeepFool attack,
the ASR dropped to a minimum of 45.6%. Addition-
ally, our model exhibited strong defences in black-box
scenarios, reducing the ASR to around 2%.

• Defence by randomised smoothing: The smoothed clas-
sifier reduced the ASR to 7% for FGSM, 29.1% for PGD,
and 13.8% for Deepfool attacks, illustrating a significant
enhancement in robustness. Randomised smoothing is
particularly effective against black-box attacks utilising
UAP, where the ASR was maintained below 2%.

• Certification by randomised smoothing: Besides the
defence, randomised smoothing can certify the robust-
ness of Wi-Fi sensing models. This method provides
a certified defence against adversarial attacks, offering
a quantifiable and certified radius within which the
model’s robustness is guaranteed. This certification en-
hances the model’s reliability against unknown threats
and facilitates comparative analysis with other Wi-Fi

sensing models. Our experiment shows the randomised
smooth method can improve the approximate certified
test set accuracy (ACTS) of the sensing model to 70.1%
when the PSR threshold was set to 0.5× 10−4.

The code can be accessed online.1

The structure of this paper is organised as follows:
Section 9 presente the related works. Section 2 introduces
Wi-Fi sensing, followed by the system model in Section 3.
We discuss white-box and black-box attack methods in Sec-
tions 4 and 5, and outline defense strategies like adversarial
training and randomised smoothing in Sections 6 and 7.
Section 8 details the experimental evaluation. We conclude
the paper in Section 10.

2 WI-FI SENSING PRIMER

Wi-Fi sensing has received massive research interest in
recent years. This paper uses gesture recognition as an
example. Performing a gesture involves hand movements,
which will affect the propagation paths of Wi-Fi signals.
OFDM is commonly adopted by IEEE 802.11 a/g/n/ac/ax,
which can provide fine-grained channel state information
(CSI). During the course of performing a gesture, a Wi-
Fi transmitter will continuously send packets to a receiver
which can estimate a series of CSI over time, representing
variations caused by gesture movements.

Different gestures involve unique hand movement pat-
terns, which will cause different effects on CSI variations.
Gesture recognition can be designed by constructing and
extracting unique features for each gesture by analysing
the specific hand and body movements. Such approaches
are named feature engineering-based approaches [25]. The
challenge for the feature engineering-based method lies in
the concurrent and unpredictable movements of various
body parts, which introduce complex impacts in the sens-
ing signals. Such intricacies hinder their development to
accurately represent these behaviours [25]. In contrast, DNN
can automatically learn the feature mapping between the
gesture and the CSI variations, which can eliminate the need
for hand-crafted features. Therefore, DNN has been widely
used in gesture recognition [8].

As shown in Fig. 1, DNN-based Wi-Fi sensing in-
volves two stages, namely training and inference. The
training dataset is denoted as {Xtra,Ytra} with Xtra =
{xtra,1, xtra,2, . . . , xtra,N} and its corresponding labels
Ytra = {ytra,1, ytra,2, . . . , ytra,N}, N is the size of the
dataset. Each sample in Xtra is a time series of CSI am-
plitude, i.e., xtra,i = {H1(i), H2(i), . . . ,HT(i)}. Each CSI in
a sample has a dimension of S × M, where S is the number
of subcarriers, and M = Nrx × Ntx, where Nrx and Nrx

represent the numbers of receiver and transmitter antennas,
respectively. Therefore, each sample is a tensor x ∈ RT×S×M.
The DNN model, f(·), can be trained using {Xtra,Ytra} in
a supervised learning manner, given as

min
1

N

N∑
i=1

L(f(xtra,i), ytra,i), (1)

1. https://github.com/Guolin-Yin/Attack WiFi Sensing. The code
will be made available upon acceptance of this paper.
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Fig. 1: Deep learning-based Wi-Fi sensing.

where L(·, ·) is the chosen loss function, f(xtra,i) is the
prediction for sample i in the training dataset by the DNN
model, and ytra,i is its corresponding true label.

During the inference phase, the receiver records the time
series of CSI sample x during the gesture performing. x
has the same dimension as the training samples, i.e., x ∈
RT×S×M. The pre-trained deep learning model f predicts
the label y as

y = argmax
t

f t(x), (2)

where f t(x) is the tth output of the model f .

3 SYSTEM MODEL

3.1 Evasion Attacks

The DNN model provides an effective way to learn compli-
cated features from a complex data structure and tackle the
complex classification problem. However, DNN models are
subject to evasion attacks, which take place at the inference
stage of deep learning to manipulate the neural network
prediction. The attacker crafts a perturbation, termed an
“adversarial sample” [12], aimed at deceiving a deep learn-
ing model to make inaccurate predictions. Under the attack,
the DNN’s output probability distribution is skewed, heav-
ily favouring the wrong outcome.

In this paper, we will apply evasion attacks to a Wi-
Fi gesture recognition system. As shown in Fig. 2, the
system consists of a transmitter, a receiver, and an attacker.
The legitimate receiver has a pre-trained DNN model, also
referred to as the victim model in this paper.

When an attack occurs, the received signal, xadv , referred
to as the adversarial sample in the attack context, becomes

xadv = x+ δ, (3)

where x is the signal from the legitimate transmitter and δ
is the received perturbation.

To constrain the intensity of the perturbation, we define
PSR as the ratio of the power of the perturbation, Pδ , to the
power of the signal, Px, given as

ξ =
Pδ

Px
. (4)

The PSR should be kept as low as possible, i.e., ξ ≪ 1, to
ensure undetectability and minimal impact on normal Wi-Fi
communication functionality [17]. Research in [18] shows
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Fig. 2: Evasion attacks to the inference stage of Wi-Fi sens-
ing.
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Fig. 3: Comparison of the clean and adversarial waveforms.

that higher PSR increases Bit Error Rate (BER), making
adversarial attacks more conspicuous. Sudden BER changes
could potentially serve as a indicator as detection. Thus,
we would like to maintain low PSR during attack a Wi-Fi
sensing model. As exemplified in Fig. 3, the clean signal
and adversarial samples (PSR = 1 × 10−4) almost over-
lap. Though small, such carefully crafted perturbations can
mislead the model into making incorrect predictions.

This paper considers the digital attack [26], which is
the worst-case scenario. In digital attacks, an attacker can
directly manipulate the model’s input, which can allow
attackers to bypass the natural barriers of over-the-air trans-
mission, such as interference and multipath fading. Thus,
direct manipulation poses the greatest threat, as it enables
precise and covert alterations to the system’s perception.

Evasion attacks can pose a huge security risk to sensing
systems [27].In smart home settings, Wi-Fi-based gesture
recognition can be utilised for functions such as lighting,
entertainment, locking/unlocking doors, etc. These appli-
cations offer user convenience but also create potential
security loopholes. Adversaries could exploit these vulnera-
bilities, particularly in the security domain, by altering ges-
ture recognition models. For instance, they might reconfig-
ure gesture commands to unlock doors without triggering
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alarms. If such evasion attacks succeed, they could facilitate
unauthorised access, leading to theft, surveillance, or even
broader network security breaches in the home. These risks
highlight the need for robust defence mechanisms in smart
home technology to safeguard user privacy and safety,
emphasising the importance of continued research and de-
velopment in securing these systems against adversarial
threats.

Evasion attacks are categorised into targeted and non-
targeted attacks based on the attacker’s goal over the target
class, as discussed in Section 3.2. They can also be classified
into white and black-box attacks based on the attacker’s
knowledge, which will be explained in Section 3.3.

3.2 Non-targeted and Targeted Attacks

3.2.1 Non-targeted Attack

The goal of non-targeted attacks is to find a perturbation, δ,
that maximises the loss function, expressed by

max
δ

L(f(x+ δ), ytrue),

s.t. Pδ ≤ Pmax.
(5)

Here, we have no control over the class to which the input
CSI will be classified. In other words, the output can be any
other class, which can be mathematically given as [28]

ytrue ̸= argmax
t

f t(x+ δ). (6)

3.2.2 Targeted Attack

The targeted attack aims to mislead the victim model to
a specific target label ytarget. It is achieved by solving the
following optimisation problem:

min
δ

L(f(x+ δ), ytarget),

s.t. Pδ ≤ Pmax.
(7)

Here, we have control over the class to which the input
CSI will be classified, mathematically given as

ytarget = argmax
t

f t(x+ δ). (8)

3.3 White-Box and Black-Box Attacks

As shown in Fig. 2, the attacker attacks the victim sensing
model by generating a perturbation sample δ using the per-
turbation generation module. The purpose of this research
is to develop adversarial sample generation algorithms ca-
pable of fooling Wi-Fi sensing systems in a variety of set-
tings. The perturbation generation module requires a DNN
model, denoted as f̂ . Depending on the knowledge that the
attacker has about the victim system, evasion attacks can be
categorised as white-box and black-box attacks.

3.3.1 White-Box Attack

In a white-box setting, the attacker has complete knowledge
of the victim model f , model input x and its label y. The
perturbation generation model of the attacker is exactly
the same as the victim model, i.e., f̂ = f . This attack is
presented in Section 4.

Model
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Fig. 4: Block diagram of adversarial training.

3.3.2 Black-Box Attack
In a black-box setting, the attacker lacks knowledge about
the victim system. Firstly, the attacker needs to obtain the
perturbation generation model (f̂ ), referred to as the surro-
gate model, independently. Secondly, the attacker does not
have access to the victim system’s training dataset.

Depending on the knowledge of the label space of the
victim system, we propose two black-box attacks such that
the attacker can gather a surrogate dataset (X ′

tra) and then
train a surrogate model for perturbation generation.

• Surrogate dataset with true labels (Section 5.2). The
attacker is aware of the true labels, Ytra, i.e., Y ′

tra and
Ytra share same label space.

• Surrogate dataset with pseudo labels (Section 5.3).
The attacker is unaware of the tasks on which the victim
model is trained, i.e., Ytra is unknown to the attacker.
The victim sensing system is a complete black-box to
the attacker. In this case, an unsupervised clustering
technique is used to construct a pseudo-label Ŷ ′

tra.

3.4 Defence by Adversarial Training
Adversarial training is a technique proposed for deep learn-
ing models to enhance their robustness against evasion
attacks. As shown in Fig. 4, adversarial examples are first
generated from the training data, and then the model is
trained on both clean and adversarial examples. The up-
dated weight version of the model fu will be used for
generating new perturbations for the next round of training
until the model is converged.

3.5 Defence by Randomised Smoothing
Randomised smoothing enhances the robustness of machine
learning models, particularly DNNs, against adversarial
perturbations. Randomness is introduced into the model’s
input during both training and inference, which leads to
smoother decision boundaries and improved robustness.

During the training process, the base classifier f is
trained on noisy variants of the original clean input data,
which enables the model to learn a smooth decision bound-
ary. In other words, the base classifier training resembles
adversarial training; however, rather than augmenting the
dataset with dedicated adversarial perturbations, it incor-
porates Gaussian noise to augment the training dataset.

Subsequently, randomised smoothing produces a
smoothed classifier g from the base classifier f . For an input
x, it creates multiple noisy instances of x by adding Gaus-
sian noise. The base classifier then processes each noisy vari-
ant. The smoothed classifier will output the most frequently
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predicted class. We denote the number of noisy variants
as K . Formally, for the base classifier f , the corresponding
smoothed classifier g is constructed as [24]

g(x) = argmax
y∈Y

P(f(x+ ε) = y), (9)

where ε is Gaussian noise and ε ∼ N
(
0, σ2I

)
.

3.6 Certification by Randomised Smoothing

The certification is a process of quantifying the robustness
of a model with a certified radius r. The term “certified
radius” refers to a measure of robustness against adversarial
perturbations. Specifically, for a given input x, the certified
radius denotes the maximum amount by which the input
can be perturbed (within that radius) while still ensuring
a consistent model prediction. In simpler terms, assume
there is a data point x and a classifier that makes a certain
prediction for x, a certified radius r guarantees that any
point within the L2 ball of radius r centred at x will
receive the same prediction from the classifier, regardless
of adversarial manipulations. Mathematically, the certified
radius r ensures that for any perturbation δ with ∥δ∥2 < r,
the prediction for x+ δ remains y:

g(x+ δ) = y for all δ such that ∥δ∥2 < r. (10)

3.7 Threat Model

In this work, we consider an evasion attack where the ad-
versary’s end goal is to manipulate the input of the sensing
model into making erroneous decisions. In other words, the
adversary maximises the error rate of the sensing model. To
simulate the worst-case adversarial scenario, we assume the
adversary has knowledge of the victim model’s input size
and can manipulate the input of the model directly.

We consider two different scenarios based on the knowl-
edge of the adversary. In the white-box approach, the adver-
sary has full knowledge of the sensing model, including its
structure, and parameters. Additionally, in the black-box ap-
proach, the adversary has limited information. Specifically,
the adversary only has access to the label space Y that the
victim model was trained on, but lacks details about the
model’s parameters, the training dataset, and live model
inputs during the testing phase. Finally, we even remove
the assumption of known label space of adversaries.

4 WHITE-BOX ATTACKS IN WI-FI SENSING

4.1 Overview

During the inference phase of a Wi-Fi sensing system,
the attacker obtains the input xi to craft the adversarial
perturbation δi to fool the model in the receiver. For a set
of inference input X = {x1, x2, . . . , xN}, a corresponding
set of perturbation ∆ = {δ1, δ2, . . . , δN} is crafted for each
input, which is referred to as the input-dependent pertur-
bation. The perturbations are small enough so that they
are imperceptible to a detector, but they can precisely lead
the classifier to make a wrong decision. There are different
approaches for perturbation generation. This paper focuses
on FGSM, PGD, and DeepFool.

4.2 Fast Gradient Sign Method (FGSM)

FGSM [20] is a “one step at a time” strategy that cre-
ates an adversarial example by pushing the clean example
into a gradient-ascent direction. The attacker calculates the
gradient of the loss function with respect to the input x.
For a given input x and a pre-trained DNN model f , the
perturbation is obtained by computing the gradient with
respect to the input x and then taking the sign of the
gradient. Mathematically given as

g := (−1)asign(∇xL(f(x), y)), (11)

where the variable y represents either the true label (ytrue)
for non-targeted attacks or the target label (ytarget) for
targeted attacks. The choice is determined by the value of
a. Specifically, a = 0 implies the use of ytrue for non-target
attack, while a = 1 implies the use of ytarget for targeted
attack. The gradient is calculated with respect to the input
x, and the sign function subsequently extracts the direction
of change for each input feature.

To maintain the PSR of the attack system, the perturba-
tion can be constructed as

δ =

√
ξ · Px

Pg
· g. (12)

We can then have control over the intensity of the attack to
the original signal.

4.3 Projected Gradient Descent (PGD)

The PGD [21] is an iterative variation of the FGSM, shown
in Algorithm 1. Different from FGSM, PGD optimises the
objective function more carefully and adjusts the perturba-
tion δ in the direction gradient iteratively with a smaller step
size instead of one large step.

In each iteration, the gradient with respect to the input
x was calculated depending on different attacker’s goals,
i.e., non-targeted and targeted attacks, and they correspond
to the objective functions (5) and (7), respectively. Unlike
FGSM, which directly utilises the sign of the computed
gradient, the PGD attack constructs the perturbation ĝ in
each step without taking the sign of the gradient. Different
from the PGD in [21], we use PSR of ξ

NI
in each iteration

to constrain the power of ĝ, i.e., step 7 in Algorithm 1. We
obtain the perturbation g accumulatively with NI iterations.
The final perturbation δ is obtained by constraining the
power of g to the given PSR ξ (step 8).

4.4 DeepFool

DeepFool [22] is a hyperplane-based non-targeted adversar-
ial attack method. The hyperplane is the basis for achieving
the classification. To change the classification label of an in-
put x, DeepFool searches for the nearest decision boundary.
The minimum perturbation for the sample is the distance
between this sample and the orthogonal projection point
on the linear approximation of the decision boundary. By
computing the distance that pushes the input to the decision
boundary, the minimal perturbation is determined. The
procedure of DeepFool is given in Algorithm 2.
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Algorithm 1: PGD Algorithm

Input: CSI x, label ytrue or ytarget, model f , PSR ξ,
Number of iteration NI

Output: Perturbation δ
1 g = 0
2 for i in range NI do
3 if Non-targeted attack then
4 ĝ = ∇xL (f(x+ g), ytrue)

5 else if Targeted attack then
6 ĝ = −∇xL (f(x+ g), ytarget)

7 g = g +
√

ξ·Px

NIPĝ
ĝ

8 δ =
√

ξ·Px

Pg
· g

9 return δ

Algorithm 2: DeepFool Algorithm
Input: CSI x, model f
Output: Perturbation δ

1 x0 = x
2 i = 0
3 p = ∞
4 while p̂(x0) = p̂(xi) do
5 for t ̸= t̂(x0) do
6 r = f t (xi)− f t̂(xi) (xi)

7 g′ = ∇f t (xi)−∇f t̂(xi) (xi)
8 p′ = r

g′

9 if p′ < p then
10 p = p′

11 g = g′

12 δi =
p

∥g∥2
2
g

13 xi+1 = xi + δi
14 i = i+ 1

15 return δ =
∑

i δi

The classification is done by following mapping from
input x and output label prediction t̂(x):

t̂(x) = argmax
t

f t(x). (13)

Let p̂(x0) be the index of the closest hyperplane, found as

p̂ (x0) = argmin
t ̸=t̂(x0)

∣∣∣f t (x0)− f t̂(x0) (x0)
∣∣∣∥∥∥∇f t(x0)−∇f t̂(x0)(x0)
∥∥∥
2

. (14)

The minimum perturbation is found by computing the
projection of the input x to the closest hyperplane, given
as

δ =

∣∣∣f p̂(x0) (x0)− f t̂(x0) (x0)
∣∣∣∥∥∥∇f p̂(x0)(x0)−∇f t̂(x0)(x0)
∥∥∥2
2

×(∇f p̂(x0)(x0)−∇f t̂(x0)(x0)).

(15)

5 BLACK-BOX ATTACK IN WI-FI SENSING

5.1 Overview
The black-box evasion attack is more practical for attack-
ers, as it does not require them to have full knowledge
of the victim system, which is a strong assumption in
white-box attacks. Notably, Wi-Fi data is highly sensitive
to environmental variations due to the impact of multipath
propagation. The primary goal of this section is to develop
evasion attack techniques that are capable of deceiving the
victim model, independent of the environments, as well as
the DNN inputs and architectures.

In contrast to white-box attacks, a black-box attack as-
sumes that the attacker does not have access to the victim
model f or its input x. Therefore, the attacker cannot use
the victim model to compute the adversarial perturbation
δ. However, in practice, the attacker can conduct their own
experiments to collect data and train a surrogate model for
perturbation generation.

Furthermore, the adversarial perturbation needs to be in-
dependent of the input in a black-box attack, as the attacker
has no access to the model’s input, which distinguishes it
from white-box attacks. Let xi be a set of all possible inputs
to the victim model with their corresponding true labels
ytruei . A universal perturbation δU must be generated to
deceive the victim model with any input, given as

ytruei ̸= f(xi + δU ). (16)

The surrogate model training and perturbation gener-
ation are elaborated in Section 5.2 when the true label
space is available. Section 5.3 relaxes the assumption even
further, in which, the attacker has no access to the true label
space of the victim sensing system. We propose a pseudo-
label generation method to train the surrogate model with
pseudo-labels.

5.2 Black-box Attack Using True Labels
5.2.1 Surrogate Model and Dataset
We assumed that the attacker possesses prior knowledge
regarding the specific gestures that the victim model has
been trained on, denoted as the label space. The attacker
is then able to carry out independent experiments by
performing these gestures to obtain a surrogate dataset.
We symbolised the surrogate dataset as {X ′

tra,Y ′
tra},

where the X ′
tra = {x′

tra,1, x
′
tra,2, . . . , x

′
tra,N} and Y ′

tra =
{y′tra,1, y′tra,2, . . . , y′tra,N}. Because the adversary has no
information about the victim’s deep learning model, it will
create its own deep learning model, i.e., the surrogate
model. Finally, the adversary will train the surrogate model
using the surrogate dataset.

5.2.2 Perturbation Generation
To obtain an adversarial perturbation, an attacker can use
a trained surrogate model as shown in Algorithm 3. The
perturbation δ is initialised as 0 and incrementally built
over each sample in the surrogate dataset X ′

tra. For each
data sample, we assess whether the perturbation δ leads to
a change in the prediction of the classifier f̂ . If it does not,
we seek the smallest possible perturbation that would move
the data sample across the decision boundary. This minimal
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Fig. 5: Training the surrogate model for black-box attacks.

Algorithm 3: UAP Algorithm

Input: Dataset X ′
tra, model f̂ , desired ASR D, PSR ξ

Output: UAP δU
1 δ = 0
2 while ASR < D do
3 for each valuex′

tra,i inX ′
tra do

4 if f̂
(
x′
tra,i + δ

)
== f̂

(
x′
tra,i

)
then

5 Calculate the smallest perturbation that
will cause x′

tra,i + δ to approach the
decision boundary:
∆δi = DeepFool(x′

tra,i + δ, f̂)
6 Update the perturbation: δ = δ +∆δi

7 δU =

√
ξP̄X′

tra

Pδ
· δ

8 return δU

perturbation is denoted as ∆δi. After each iteration, ∆δi is
incorporated into the overall perturbation δ. This process is
mathematically represented as follows:

δ := δ +∆δi. (17)

In this paper, we use DeepFool from Section 4.4 to
estimate the minimal perturbation ∆δi. The algorithm will
be terminated when the ASR on the dataset X ′

tra reaches
the threshold D. The final perturbation δU is obtained by
projecting it to the desired PSR, and it is given as

δU =

√
ξP̄X ′

tra

Pδ
· δ, (18)

where P̄X ′
tra

= 1
N

∑N
i=1 Px′

tra,i
and Px′

tra,i
is the power of

the sample x′
tra,i. UAP is expected to be effective across

different environments and models. Notably, our approach
only considers non-target attacks as DeepFool is primarily
used for non-target attacks in prior studies [29], [30].

5.3 Black-Box Attack Using Pseudo Labels

5.3.1 Training Surrogate Model with Pseudo-labels
In this section, we relax the assumption that the attacker
possesses knowledge of the classes used to train the victim
model. and consider a more challenging scenario where the

attacker lacks information about the classes on which the
victim model is trained.

Due to the broadcast nature of wireless propagation, an
attacker within range can receive all the signals of the Wi-
Fi sensing system, as shown in Fig. 5. During the victim
system’s inference phase (the working stage), the attacker
can eavesdrop on the reflected sensing signal, and construct
X ′

tra = {x′
tra,1, x

′
tra,2, . . . , x

′
tra,N} by locating a small Wi-Fi

receiver within the sensing area of the victim system. How-
ever, it may not have the label information. Pseudo-labels
of the dataset can be generated. We denote the pseudo-
label set as Ŷ ′

tra = {ŷ′tra,1, ŷ′tra,2, . . . , ŷ′tra,N}. The surrogate
model will be trained on the surrogate dataset {X ′

tra, Ŷ ′
tra}.

The perturbation generation method will be the same as in
Section 5.2.

5.3.2 Pseudo Label Generation

Given a set of unlabelled eavesdropped datasets, we pro-
pose to create pseudo-labels using k-means clustering,
which clusters similar data points together based on their
characteristics, and then we assign the pseudo-label to each
cluster for surrogate model training. We choose k-means
due to its proven effectiveness in conjunction with DNN for
discovering data patterns. k-means-generated pseudo-labels
train DNN models through self-supervision [31], guiding
feature learning in neural networks by creating clusters
from unlabelled data, eliminating the need for manual an-
notations. Besides k-means clustering, alternative advanced
unsupervised learning methods could also be employed,
such as k-means++ [32], hierarchical clustering, and spectral
clustering [33].

The k-means clustering technique organises data into R
independent groups based on the feature distribution of
each sample. The process involves the following steps.

(a) Define the number of clusters as R.
(b) R cluster centroids initialised by dividing all objects

into R clusters randomly.
(c) The distance between centroids of all clusters and each

sample will be computed using the Euclidean distance.
The centroid-sample distance is computed as follows:

d(x′
tra,i, Cr) =

√√√√ D∑
j=1

(
x′
tra,i,j − Cr,j

)2
, (19)

where i denotes the ith sample in the set X̂ ′
tra, and

j refers to the jth element in x′
tra,i, where the total

number of elements is D = T × S × M. Cr symbolises
the rth centroid.

(d) Each sample will be assigned to the cluster with the
closest centroid.

(e) Update the centroids of clusters.

Steps (c), (d) and (e) will be repeated until the centroids
stop changing. Each data sample x′

tra,i will be assigned with
the closest cluster Cr . All the samples within the rth cluster
will be assigned the same label. Please note that the pseudo
labels in this section may not be mapped to the real gestures,
but are the index of the clusters.
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6 DEFENCE BY ADVERSARIAL TRAINING

To reduce the impact of the attack, an adversarial training
mechanism was employed as a countermeasure against
evasion attacks.

In each training epoch, a perturbation generation algo-
rithm will generate the adversarial samples that increase
model loss based on the current model’s parameters. The
training process will minimise the overall loss on top of
adversarial and clean samples. The process repeats until the
DNN-based model converges. The mathematical equation
of adversarial training is given as

min
1

N

N∑
i=1

{L(f(xtra,i), ytra,i) + L(f(xtra,i + δi), ytra,i)}

s.t. Pδ ≤ Pmax, (20)

where xtra,i ∈ Xtra and ytra,i ∈ Ytra. The adversarial
training aims to solve the minimisation problem and obtain
a DNN model f over both perturbed and clean training
datasets. The training PSR ξtraining is the relative power of
the perturbation with respect to the original signal during
the adversarial training phase, the adversarial samples can
be generated using various methods such as FGSM and
PGD. By using adversarial samples during the training
process, the model is compelled to learn not just the features
inherent in clean input data but also the patterns existent in
adversarial samples.

7 DEFENCE BY RANDOMISED SMOOTHING

Despite bolstering adversarial robustness, adversarial train-
ing falls short in providing concrete robustness guarantees
and the defence may fail when encountering a stronger or
unknown attack that has not been seen during training.
Randomised smoothing [24] is adopted to fix this issue.
Specifically, randomised smoothing is a certified defence
approach, which brings quantifiable robustness (certified
radius). Within this certified radius, corresponding to a
specific PSR value, the system’s predictions remain constant,
unperturbed by adversarial interference.

Randomised smoothing showcases remarkable generali-
sation capabilities for novel attacks. Owing to its inherent
statistical foundation, randomised smoothing exhibits re-
duced vulnerability to overfitting on particular adversarial
perturbation generation techniques. This trait equips the
system with an enhanced capability to counteract not just
known, but also emergent and novel adversarial attacks.

7.1 Training Base Classifier with Gaussian Noise
Similar to the aforementioned adversarial training, the train-
ing dataset can be also augmented with Gaussian noise
instead of adversarial perturbation (δi). The training process
can be mathematically given as

min
1

N

N∑
i=1

{L(f(xtra,i), ytra,i) + L(f(xtra,i + εi), ytra,i)}

s.t. Pε ≤ Pmax, (21)

where εi ∼ N
(
0, σ2I

)
. The relative power of the noise

with respect to the signal during training can be also char-
acterised using ξtraining . By introducing such noise, the
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Fig. 6: Inference process of smoothed classifier

training data is perturbed in various directions, ensuring
the deep learning model is exposed to a diverse range
of input variations. By training the classifier on this aug-
mented dataset, it inherently learns to recognise and cor-
rectly classify inputs even in the presence of perturbation.
Ultimately, this noise-augmented training strategy enhances
the model’s ability to generalise across a broader spectrum
of input perturbations, leading to increased robustness in
multiple directions.

7.2 Inference
The overall inference process is shown in Fig. 6, where the
smoothed classifier g assigns a label to the input x based
on the most frequent label that f predicts among K noisy
samples.

• Noise Variant Generation: the smoothed classifier gen-
erates K noisy samples x′

i = x + εi, where each εi is
drawn from a normal distribution N (0, σ2I).

• Base Classifier Prediction: the classifier f makes pre-
dictions for each of these perturbed inputs, denoted by
y′i = f(x′

i) for i = 1, 2, ...,K .
• Aggregation: the most frequent label yA among y′i will

be determined as the predicted label for the input x.
• Abstention will determine if the probability of yA is

statistically significant. The classifier g will output the
label yA if pA is statistically significant, otherwise, the
algorithm will abstain.

Abstention in randomised smoothing refers to a tech-
nique where a model, instead of making a prediction,
chooses to abstain from a response when it is not suffi-
ciently confident about the result by two-sided hypothesis
test [24]. According to (10), the smoothed classifier g draws
K predictions from the noisy variants of input x. The
probability of the most frequent predicted class is denoted
as pA with occurrences nA. A two-sided hypothesis test
evaluates if pA is statistically significant, with nA assumed
to follow a Binomial distribution with parameters K and
success probability q. Let BinomPValue(·) be the function
to compute p-value of the two-sided hypothesis. If the p-
value from BinomPValue(nA,K, q) is less than or equal to
α (incorrect probability), the classifier confidently predicts
the label of the input x. Otherwise, it abstains from the pre-
diction, since it is not statistically significant. The abstention
mechanism ensures predictions are statistically significant
and reliable, thus enhancing the system’s robustness.

7.3 Certification by Randomised Smoothing
In evaluating and certifying the robustness of g around
an input x, the most frequent predicted class yA is first
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estimated using g(x) with a limited set of noise variants,
i.e., small K . This initial estimation serves as a preliminary
assessment. Subsequently, a more extensive set of noise
variants is employed to refine the estimation of the lower
bound probability pA. The upper bound probability of any
other class, denoted as pB , will be simply deduced as
pB = 1 − pA. Subsequently, the same abstain mechanism
introduced in Section 7.2 will be used to determine if pA is
statistically significant. If a statistically significant determi-
nation is made, indicating a robust and confident classifica-
tion, the procedure proceeds to calculate the certified radius,
which is calculated as

r =
σ

2
(Φ−1(pA)− Φ−1(pB)), (22)

where Φ−1(·) denotes the inverse of the cumulative distri-
bution function of the standard normal distribution.

To better assess adversarial robustness in Wi-Fi sensing
systems, we transitioned from using certified radius, r, to
certified PSR, providing a relative measure of perturbation
strength against the signal, given as

ξ = (
r

||x||2
)2. (23)

This adjustment ensures a more precise evaluation of the
system’s robustness to adversarial attacks.

8 EXPERIMENTAL EVALUATION

In this section, we first introduced the setup and evaluation
metrics in Sections 8.1 and 8.2, respectively. The white-box
algorithms were evaluated in Section 8.3. Black-box attacks
with true and pseudo labels were evaluated in Sections 8.4
and 8.5, respectively. Before dig into the defence perfor-
mance, we firstly evaluated the impact of different defence
strategy in Section 8.6 following by certification experi-
ment in Section 8.7. The defence performance of adversarial
training against white-box, black-box attacks and corre-
sponding complexity analysis was shown in Section 8.8.1,
Section 8.8.2, and Section 8.8.3, respectively.

8.1 Setup
A PC was used, equipped with an Intel i7-8700K 3.7 GHz
processor, 16 GB of memory, and an NVIDIA GeForce GTX
2080Ti graphics card. We used TensorFlow and Keras for
deep learning.

8.1.1 DNN Models
Victim Model: A CNN model is used, denoted as CD . The
architecture is shown in Fig. 7(a), which is revised from the
classic AlexNet architecture.

Model for White-Box Attacks: As the attacker is as-
sumed to have access to the victim model, the same model
as the victim model is used for white-box attacks.

Surrogate Models for Black-Box Attacks: Three differ-
ent surrogate models were used. Specifically, the model CD1

is constructed based on the CD, with different numbers
of units in dense layers. The model CD2

is constructed
based on the CD1

, with different numbers of filters in all
convolutional layers and different filter sizes, maxpooling
size. The details of those models are given in Figs. 7(b)
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Fig. 7: The architecture of DNN models used. G in the last
dense layer is the number of prediction classes. (a), (b), and
(c) are model CD , CD1

, and CD2
, respectively. The different

parameters are highlighted in red.

and 7(c). A standard VGG19 architecture with revised input
and output layers is also used but is not shown due to the
space limit.

8.1.2 Datasets
This paper used public Wi-Fi sensing datasets, i.e., SignFi [7]
and Widar [5]. They are chosen for their relevance to gesture
recognition research and practical applications.

• The Widar dataset includes widely recognised gesture
classes essential for academic study. It was collected in
a classroom environment by three different users, and
each user performed six gesture classes (push&pull,
Sweep, Clap, DrawO, Zigzag, and DrawN ) 20 times.

• The SignFi dataset offers a diverse range, with 276
classes of sign language, providing a detailed and
varied set of gestures for a comprehensive system
evaluation. The dataset was collected in both lab and
home environments, with 20 and 10 samples per class,
respectively.

Both datasets were collected using Intel 5300 Wi-Fi cards.
The card has Ntx = 1 transmitter antenna and Nrx = 3
receiver antennas, i.e., M = 3. The 802.11 CSI tool [34] was
used, which reports the CSI of 30 selected subcarrier groups,
i.e., S = 30. And T = 200 sampling points was used. In
summary, each input CSI tensor is x ∈ RT×S×M. All datasets
were randomly divided into 80% of data for training and
20% of data for testing, respectively.

8.2 Evaluation Metrics

8.2.1 Attack Success Rate
To quantify the effectiveness of the adversarial attack, ASR
was used, which is the proportion of the number of success-
fully attacked samples (NS) among the number of attacked
samples (NT ), defined as

ASR =
NS

NT
. (24)
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8.2.2 Approximate Certified Test Set Accuracy
ACTS is proposed to quantify the robustness of models
in [24]. In the original ACTS definition, a certified radius,
r, is used to compute the ACTS. In this paper, to better
characterise the relationship between the certified range and
signal strength, we proposed to use certified PSR instead,
defined in (23).

ACTS represents the proportion of test samples that the
model accurately classifies without abstaining and certifies
with a certified PSR larger than the predefined PSR thresh-
old (ξτ ). The ACTS is mathematically defined as

ACTS =
1

Nc

Nc∑
i=1

Ci, (25)

where Nc is the total number of certified samples in the
dataset, Ci is a binary variable defined as

Ci =

{
1 if ξi ≥ ξτ
0 if ξi < ξτ .

(26)

8.3 White-Box Attack
8.3.1 Non-Targeted White-Box Attacks
In this section, the performance of FGSM, PGD, and Deep-
Fool was evaluated on the SignFi dataset. As a baseline,
we also considered a Gaussian noise attack [27], and the
Gaussian noise perturbations were randomly generated ac-
cording to a Gaussian distribution. To demonstrate the ef-
fectiveness of the evasion attacks, we examined them under
low PSR levels in the range of PSR= 0 to 5 × 10−4. Clean
samples were used when PSR= 0.

In Fig. 8, all the attack algorithms reduce the victim sys-
tem’s performance significantly at a low level of PSR. When
the PSR was set to 5×10−4, the ASR of FGSM was found to
be 61.4%; PGD with one, two, and three iterations achieved
ASRs of 86.3%, 86.3%, and 89.5%, respectively. The notation
”PGD-NI” represents PGD with NI iterations. These results
confirm that PGD outperforms FGSM, regardless of the
number of iterations, due to the more meticulous crafting of
perturbations by PGD. Notably, DeepFool achieved an ASR
of 91.2% under the same conditions. These results demon-
strate that increasing the number of iterations of PGD leads
to stronger attacks, with the performance at two iterations
comparable to that of DeepFool. The Gaussian noise attack,
has no negative impact on the victim model, as the power
of the perturbation is extremely limited. In comparison to
Gaussian noise attacks, evasion attacks are more power-
efficient and can cause a significant performance decrease
in the victim system.

8.3.2 Targeted White-Box Attacks
This subsection examined targeted FGSM and PGD using
the Widar datasets. As shown in Fig. 9, the PGD attack
yielded superior results compared to the FGSM attack.
Conversely, the efficacy of the Gaussian noise attack had
a negligible impact on the performance of the victim model,
with an ASR of nearly zero.

To demonstrate the targeted attack’s effect, PSR =
6.7 × 10−4 and ytarget = 4 was chosen, which corresponds
to the class “DrawO” as an example. The ASR of the FGSM
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Fig. 8: Performance comparison of non-targeted white-box
attacks. FGSM, PGD, and DeepFool are studied.
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Fig. 10: The confusion matrix of attack-free and different
white-box target-attack approaches. (a) Attack-free. Overall
accuracy: 100%. (b) Targeted FGSM attack with PSR = 6.7×
10−4. Overall ASR: 21%. (c) Targeted PGD attack with PSR
= 6.7× 10−4. Overall ASR: 78%.

and PGD are 21% and 78.8%, respectively. The confusion
matrix is depicted in Fig. 10. The PGD approach causes the
model to incorrectly classify the majority of examples to the
targeted class, and the FGSM performs poorly at such a low
PSR. It is worth noting that targeted attacks require higher
perturbation levels than non-targeted attacks since the tar-
geted attack involves manipulating the input in a specific
way to cause the model to misclassify it as a particular class.
In contrast, a non-targeted attack only requires causing the
model to make any kind of misclassification.

8.4 Black-box Attack with True Labels

In this section, we evaluated the performance of the
UAP under two different scenarios, i.e., cross-environment
scenario and cross-environment & cross-model scenarios.
SignFi dataset was used.
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Fig. 11: Performance of UAP in the scenario of cross-
environment.

8.4.1 Cross-Environment Scenario

The evaluation in this section was conducted under the
assumption that the attacker is aware of the victim model’s
classes and the victim’s deep learning architecture. How-
ever, the attacker is not aware of the model parameters f
and the train/test data x.

The surrogate dataset was collected in a different en-
vironment from the victim system. In order to show the
difference between the two environments, we compared a
DNN’s performance on ’home’ data versus ’lab’ data. The
home-trained model achieved an accuracy of 9% on lab
data as test data, while the lab-trained model achieved an
accuracy of 7.8% on home-collected test data. The significant
performance drop confirms the distinct nature of these two
environments in terms of data characteristics.

We trained two distinct models utilising the CD archi-
tecture shown in Fig. 7(a) on the SignFi datasets that were
collected from home and lab environments, respectively. To
examine UAP’s cross-environment attack performance, the
UAP produced in one environment will be utilised to attack
the model trained in another environment. For instance, if
the model of the home environment is used as a surrogate
model to generate the UAP perturbation, then the model of
the lab environment would be used as the victim model
to test the UAP performance. The attack performance of
Gaussian noise was utilised as a baseline for both models.

In Fig. 11, the blue and orange lines show the perfor-
mance of UAPs that were created in the home and lab en-
vironment, respectively. They impair victim models’ perfor-
mance significantly. Specifically, when the PSR = 2 × 10−2,
the UAP created from home and lab environment, achieved
89.0% and 94.8% of ASR, respectively. This indicates that
surrogate models trained for the same task as the victim
model make UAPs effective even with significant environ-
mental changes. Compared to Gaussian noise attacks, UAPs
compromise the victim system more effectively with low
PSR. Despite variations in the CSI pattern across different
environments, UAPs work across environments because the
same class retains some common characteristics.

8.4.2 Cross-Environment & Cross-Model Scenario

In this subsection, the assumption was further released. The
attacker only has the knowledge of classes on which the
victim model was trained.

Both victim’s and attacker’s models employed four dif-
ferent architectures, i.e., CD, CD1 , CD2 , and VGG19. The
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Fig. 12: Performance of UAP in the scenario of cross-
environment and models.
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The attacker’s environment was ‘home’, and the victim’s
environment was ‘lab’. PSR = 1.58× 10−2.

models from the home environment were utilised to gen-
erate the UAP, while the models from the lab served as
victims. Fig. 12 shows the cross-environment and cross-
model attack performance. The UAP performs much better
than the Gaussian noise attack at the same level of PSR.

Fig. 13 demonstrates cross-model attack capabilities us-
ing PSR = 1.58 × 10−2. The x-axis shows the victim
model trained on the SignFi dataset in the lab environment,
while the y-axis represents surrogate models trained in the
home environment of the SignFi dataset. The average ASR
achieved in this scenario is 89.4%. The UAP generated from
model CD to VGG19 showed the lowest ASR in the cross-
environment and model scenario. The results revealed that
an effective UAP can be computed even if the surrogate
model does not match the victim model.

Although the training environments for the surrogate
and victim models differ, their shared classes allow for
learning common features. This enables the surrogate model
to create a robust UAP targeting these consistent features,
effectively causing misclassifications.

8.5 Black-Box Attack with Pseudo Labels

In this evaluation, Widar was utilised, involving the simul-
taneous recording of each sample by multiple receivers in
different locations. To simulate a practical attack scenario
with an eavesdropping attacker capturing Wi-Fi transmis-
sions during gesture sensing, a different receiver was desig-
nated as the attacker. This enables the attacker to construct
a CSI dataset of various gestures without corresponding
labels. The k-means clustering algorithm outlined in Sec-
tion 5.3 was applied to assign pseudo-labels.
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Fig. 14: Black-box attacks using pseudo-labelling.

As the attacker is unaware of the task on which the
victim model was trained, we evaluated the performance
of the UAP generated from surrogate models trained on
varying numbers of clusters. As shown in Fig. 14, the sur-
rogate model trained on the pseudo-label, Up, has a similar
performance to the one trained on the true label Ur . The
average ASR of the UAPs produced by pseudo-label was
80%, which is much higher than the ASR of the Gaussian
noise attack (40%).

Furthermore, the variability introduced by k-means clus-
tering does not significantly affect the effectiveness of UAPs
generated from DNN models. ASRs do not vary signifi-
cantly across clusters from 3 to 9, and are similar to UAP
generated by the surrogate model trained with real labels,
Ur in Fig. 14. The performance curves overlap, indicating
that UAPs maintain their ability to induce misclassifications,
regardless of the number of clusters used.

Transferability [35] of adversarial examples, where those
crafted for one model are effective on another with similar
tasks, is essential for establishing a generalised surrogate
model. In addition, the results in Section 8.4.2 also show
that a UAP can be effectively transferred and applied across
different models and environments, enhancing its practical
applicability. This characteristic suggests that UAP creation
can be considered a one-time investment. Therefore, the
threat posed by this form of attack should not be under-
estimated, given its potential impact and feasibility.

8.6 Impact of Defence Methods on Clean Samples
During adversarial training, the victim has the ability to
choose two key parameters: the PSR of each adversarial
sample and the perturbation generation method. These two
parameters must be carefully balanced to address the trade-
off between the accuracy of the DNN model on clean
samples and its robustness against various perturbations
such as FGSM and PGD with a different number of it-
erations. It is worth noting that the DeepFool algorithm
was not selected for adversarial training due to its high
computational complexity. Table 1 presents the accuracy of
the adversarial-trained model on clean samples, the models
were trained with different PSR and perturbation generation
methods. The accuracy of the adversarially robust model on
clean samples varies based on both PSR and perturbation
generation methods. For instance, when FGSM was used
as a perturbation generation algorithm during adversarial

TABLE 1: Accuracies of adversarial trained models on clean
samples

ξtraining 0.001 0.003 0.005
FGSM 93.10% 91.40% 71.70%
PGD-4 86.70% 74.20% 0.22%
PGD-8 76.70% 71.30% 0.09%
PGD-10 69.70% 74.80% 0.02%
PGD-16 16.40% 2.00% 0.90%

TABLE 2: Accuracy of smoothed model on clean samples

ξtraining 0.2 0.3 0.4 0.5 1.0 1.5
Accuracy 97.9% 98.5% 98.1% 98.8% 92.5% 85.9%

training, the model’s accuracy decreased from 93.10% to
71.7% when the PSR was increased from 1×10−3 to 5×10−3.
Additionally, a stronger attack method led to a further de-
crease in the model’s accuracy on clean samples. Specifically,
when the number of PGD iterations increased from 4 to 16,
the accuracy of the model decreased from 86.70% to 16.40%.
The reason for this is that an increase in the PSR or the
utilisation of stronger attack methods leads to an increase in
model loss, thereby impeding the convergence of the overall
loss minimisation process, as represented by (20).

The results of randomised smoothing on clean samples
are shown in Table 2. Training with Gaussian noise had
a considerably smaller negative effect on model accuracy
compared to adversarial training. When ξtraining ≤ 0.5,
the smoothed classifier retains the same performance level
as the regularly trained model, maintaining an accuracy
of 98.6%. This is because the Gaussian noise is inherently
random and does not intentionally target the model’s vul-
nerabilities. The Gaussian noise acts as a form of reg-
ularisation, encouraging the model to learn more robust
features that could be helpful for accuracy on clean data
when a proper level of noise strength is selected, while still
providing some level of robustness against perturbations.
When ξtraining > 0.5, the noise becomes dominant and
overwhelms, which affects the classification accuracy.

8.7 Impact of Training PSR on Certified Robustness of
Randomised Smoothing
To explore how training PSRs (ξtraining) influence defensive
capabilities, we trained six distinct models, each augmented
with noise at varying ξtraining . The certified radius was
computed by setting K to 102, and 105 for initial guess and
certification, respectively. Subsequently, we evaluated ACTS
as we increased the PSR threshold (ξτ ) at the testing phase.
The results are shown in Fig. 15. The ACTS of all the models
decrease as the increase of the ξτ , because the higher ξτ , the
more strict requirements are needed. The higher ACTS at a
certain ξτ , the more robust the model is.

As ξtraining increases in models trained with varying
PSRs, robustness initially rises, peaking at a PSR of 0.5.
Notably, at ξτ = 0.5×10−4, the model with a ξtraining = 0.5
certifies 70.1% of samples, surpassing those with ξtraining =
0.2, 0.3, 0.4, 1.0, and 1.5, which certify 27%, 40%, 57%, 48%,
and 26% of samples, respectively. This is because a higher
PSR during training ensures that the model does not overfit
to clean data or specific types of noise. Instead, the model
learns to generalise across a broader set of perturbations,
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refining the decision boundaries in a manner that is less
sensitive to small changes in the input.

However, a further increase of ξtraining would reduce
the robustness of the model. As the PSR continues to
increase and the noise power becomes more dominant, it
begins to overwhelm the genuine features of the signal
during the training. At this point, while the adversarial
patterns may still be disrupted, the true and meaningful
patterns of the data are also masked by noise. As a result,
the model may struggle to correctly classify even benign
inputs, leading to a decrease in its overall robustness.

8.8 Defence Performance of Adversarial Training and
Randomised Smoothing
8.8.1 Defence Against White-Box Attacks
In this subsection, we examined the defence performance
of both adversarially trained models and randomised
smoothed models.

For the adversarially trained model, considering the
adversarial trained model’s accuracy on clean samples, we
only tested the models that are adversarially trained with
FGSM and PGD-4 with PSR of 1 × 10−3. For the smoothed
model, we choose the model trained with a PSR of 0.5.
Overall, the models trained with adversarial perturbations
obtained similar defence performance compared with the
smoothed classifier. However, the randomised smoothed
model showed less variability in defence performance un-
der different attacks. The results are shown in Fig. 16.
Upon analysing the results, it becomes evident that the
adversarially trained and smoothed models demonstrated
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Fig. 17: Defence performance of adversarial training
and randomised smoothing in the scenario of cross-
environment.

enhanced robustness against evasion attacks compared to
the regularly trained models (Fig. 8).

The adversarially trained models showed increased ro-
bustness against attacks. When subjected to the FGSM attack
with a PSR of 5 × 10−4, the model trained with FGSM
and PGD perturbations exhibited an ASR of 6% and 8%,
respectively, a stark contrast to the 63.6% ASR of the reg-
ular model. Under the more rigorous PGD attack at the
same PSR, the FGSM-trained model experienced an ASR
of 14.8%, while the PGD-trained model demonstrated an
ASR of 13.6%. Moreover, during the DeepFool attack, the
FGSM-trained model endured a high ASR of 74.9%, but the
PGD-trained model had a significantly lower ASR of 45.6%.
Adversarially trained models exhibit enhanced robustness
against adversarial examples they encountered during train-
ing. This is because adversarially trained models have been
attuned to recognise the genuine feature and motion pattern
in the adversarially perturbed input. However, one limita-
tion of adversarial training is the potential for the model
to become overly specialised, developing robustness that is
overly tailored to the specific types of adversarial attacks
used during training. For example, the adversarial trained
model demonstrated good defence capability when it faced
the gradient-based attacks that it had seen during training,
but failed to achieve similar defence performance when
it dealt with the adversarial samples generated from the
DeepFool technique.

The smoothed classifier displayed competent defensive
capabilities. When challenged by the FGSM attack at a PSR
of 5 × 10−4, the smoothed model achieved an ASR of 7%.
This robustness was slightly less effective against the PGD
attack, where the smoothed model’s ASR rose to 29.1%.
Notably, at the same PSR level, the smoothed classifier
recorded a more favourable ASR of 13.8% under Deepfool
attacks. Unlike adversarial training specifically sharpening
the model’s robustness against known adversarial patterns,
randomised smoothing aids in elevating the model’s overall
robustness, especially against unforeseen or new adversarial
perturbations. As the blue lines shown in Fig. 16, they
are close together, compared with the adversarial trained
models, indicating that the smoothed model can maintain
relatively stable defence performance.
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8.8.2 Defence Against Cross-environment Black-Box At-
tack

This section presents an evaluation of the capacity of ad-
versarially robust models to withstand black-box attacks in
cross-environment scenarios. To do so, we conducted exper-
iments using models that were adversarially trained with
the PGD-4 (PSR = 1× 10−3) and ramdonised smoothing. In
these experiments, we examined the defence effectiveness of
different adversarially robust victim models in the scenario
of cross-environment black-box attacks. Specifically, we
trained surrogate models regularly and generated UAP to
attack victim models that were either adversarially trained
or randomised smoothed in a different environment. For
example, we trained a surrogate model regularly in a home
environment and used it to attack victim models that were
adversarially trained in a lab environment. The experiment
set-up is similar to the experiment in Section 8.4.1, except
the victim models were trained with adversarial samples.

The results of these experiments are shown in Fig. 17,
where adversarial training and randomised smoothing
yielded comparable performance. In comparison to the reg-
ular trained model (depicted in Fig. 11), both adversarially
trained models and randomised smoothed models in both
scenarios demonstrate a substantial ability to decrease the
impact of UAPs, with the UAP generated from the lab
environment exhibiting the strongest ASR of below 2%.

During adversarial training, the model is exposed to
both clean and adversarial examples, allowing it to learn the
intrinsic features of the input data that are relevant to the
classification task during adversarial training, rather than
relying on irrelevant or spurious features that are suscepti-
ble to adversarial perturbations. Therefore, the adversarially
trained model is less sensitive to small perturbations around
the input data, making it more difficult for attackers to
generate small adversarial perturbations.

As for randomised smoothed models, their inherent
design introduces a layer of variability during training.
By incorporating Gaussian noise, these models develop a
more generalised understanding of the decision boundary,
making them less sensitive to perturbations.

It is worth noting that the focus of our evaluation is ex-
clusively on this particular scenario, i.e., cross-environment
black-box scenario, given that it provides the attacker with
the most significant advantage, compared to the other two
scenarios, i.e., cross both environment and model attack and
pseudo-label attack. An additional constraint was put on
the attack’s abilities. Therefore, if the adversarially robust
model were robust in this scenario, it would have a greater
likelihood of performing well in more restricted scenarios.
This would indicate that the model has a high level of
robustness to a variety of black-box attack circumstances.
Therefore, the evaluation of the model’s performance in this
scenario is critical in assessing its overall robustness and
effectiveness.

8.8.3 Complexity Analysis

In the evaluation of defence mechanisms against evasion
attacks, the complexity of each training epoch varied sig-
nificantly across different methods. Adversarial training
using the FGSM clocked in at 34.58 seconds per epoch. A

more intensive approach, adversarial training with PGD-
4, required a higher time investment of 46.58 seconds per
epoch. In contrast, randomised smoothing, which entails
training with Gaussian noise, stood out for its efficiency,
costing only 4 seconds per epoch.

Regarding the convergence speed of these methods, ad-
versarial training with FGSM and PGD-4 showed similar
requirements, taking 323 and 322 epochs, respectively, to
converge. Randomised smoothing again demonstrated its
efficiency, requiring only 128 epochs to achieve convergence.

Summarising the overall training time, randomised
smoothing emerges as the more time-efficient defence mech-
anism. In terms of performance, randomised smoothing
achieved comparable defence performance with adversar-
ial training against gradient-based attacks, but the defence
capability remains valid over unseen attacks.

9 RELATED WORKS

9.1 Evasion Attacks in Wireless Domain

The evasion attack has been studied for wireless commu-
nications such as spectrum sensing [26], [36], modulation
classification [37]–[39], power allocation [40] and 5G net-
works [41]. For example, the work in [41] presented a “my-
opic threat model” to simulate realistic adversarial machine
learning (ML) attacks in 5G networks. This threat model
was proactively tested on six ML applications within 5G,
five out of six applications were broken by the proposed
attacks. Compared to conventional jamming attacks [42],
evasion attacks are often more stealthy and energy-efficient.

Evasion attacks against deep learning-based Wi-Fi sens-
ing is still in the nascent stage. An initial exploration was
presented in [43], which considers white-box approaches
and assumes the attacker can access the model’s parameters.
In contrast, [17] proposed a model-independent attack, but it
lacked consideration of environmental diversity, potentially
weakening the attack’s effectiveness. The study in [27] pre-
sented a black-box attack method using random Gaussian
noise, but this was not optimised for deep learning models,
leading to inefficiency. The authors in [44], [45] demon-
strated vulnerabilities in Wi-Fi-based behaviour and gesture
recognition systems by developing attacks that target the
inference stage - using signal jamming and adversarial
perturbations, respectively. However, These methods often
require large jamming signals that can interrupt data trans-
missions. Moreover, [45] relied on frequent victim model
queries for specific perturbations, which may not be prac-
tical due to limited access to victim model responses. The
latest work [18] studied adversarial attacks in Wi-Fi sensing
using PGD and FGSM, which focused on the impact of the
attack on joint communication and attack performance.

9.2 Countermeasures

In order to address the threat of evasion attacks, defence
mechanisms have been designed, such as adversarial train-
ing and randomised smoothing. Initially proposed by Good-
fellow et al. in [20], adversarial training trains neural net-
works on adversarial examples. This method’s importance
is underscored by [46], which highlights the need for adapt-
able defences against simple but effective evasion attacks.
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In cybersecurity, as [47] notes, such training is crucial for
countering threats to machine-learning classifiers. Addition-
ally, [48] emphasises the need for this training method to
address learning algorithm vulnerabilities against sophisti-
cated attacks. Extending this concept, the authors in [40]
applied adversarial training to power allocation in massive
MIMO systems in wireless communication, demonstrating
improved adversarial robustness against gradient-based at-
tacks. Similarly, in the field of wearable device-based human
activity sensing, the authors in [49] studied adversarial
training against white-box attacks.

In the area of Wi-Fi sensing, the authors in [19] inves-
tigated the vulnerability of the Wi-Fi sensing model, lever-
aged FGSM and PGD, and proposed an adversarial train-
ing method as countermeasures to improve the robustness
of the sensing model. Nevertheless, the study exclusively
examined adversarial attack types encountered during the
training phase, thereby failing to ensure robustness against
unknown attacks.

Different from adversarial training, randomised smooth-
ing can not only address the challenge of unknown eva-
sion attacks but also bring advantages like scalability and
certified robustness [24], [50]. Randomised smoothing intro-
duces controlled noise and creates models less sensitive to
small perturbations, which is more resilient to a variety of
attacks. Its scalability ensures effectiveness across diverse
model sizes and types, while the aspect of certified robust-
ness provides a quantifiable measure of security against ad-
versarial threats. However, adopting randomised smooth-
ing for WiFi sensing is missing and their performance is
unknown.

10 CONCLUSION AND FUTURE WORK

This paper not only extensively studied evasion attacks
against deep learning-based Wi-Fi sensing systems, reveal-
ing their vulnerabilities to even minimal power changes,
but also introduced effective defence methods to enhance
system robustness and security. Our experiments demon-
strate the significant vulnerability of WiFi sensing model to
evasion attacks which achieved ASR as high as 97.0% in
white-box scenarios and 95.6% in black-box scenarios. No-
tably, our pseudo-labelling strategy, which can be launched
easily by eavesdropping the sensing signal of victim Wi-Fi
sensing system, achieved an average ASR of 80%. To address
these vulnerabilities, we implemented adversarial training
and randomised smoothing as defences. These strategies
considerably improved the robustness of the Wi-Fi sensing
model by reducing ASR to about 6% for white-box and 2%
for black-box scenarios. Additionally, randomised smooth-
ing provided certifiable robustness, with 70.1% of samples
certified in our most robust model, enhancing predictability
and security in Wi-Fi sensing systems.

In a real-world Wi-Fi sensing system, the scope extends
beyond the sensing DNN model to encompass various
preprocessing steps, including noise filtering, signal nor-
malisation, and feature extraction. These steps are crucial to
the system’s functionality, as they can significantly modify
raw Wi-Fi signals before their analysis by the deep learning
model. The extent to which these preprocessing steps impact
the effectiveness of adversarial examples remains an open

question. Furthermore, when adversarial perturbations are
transmitted over the air, factors like multipath fading and
synchronisation between the perturbation and the sensing
signal introduce additional complexities. Therefore, our fu-
ture work aims to broaden our research scope to not only
focus on the DNN model but also consider the entire Wi-
Fi sensing system. This expansion will involve examining
various preprocessing schemes in over-the-air scenarios,
providing a more comprehensive understanding of the sys-
tem’s vulnerabilities and robustness.
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