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Abstract—Securing Internet of Things (IoT) devices presents
increasing challenges due to their limited computational and en-
ergy resources. Radio Frequency Fingerprint Identification (RFFI)
emerges as a promising authentication technique to identify wire-
less devices through hardware impairments. RFFI performance
under low signal-to-noise ratio (SNR) scenarios is significantly
degraded because the minute hardware features can be easily
swamped in noise. In this paper, we leveraged the diffusion
model to effectively restore the RFF under low SNR scenarios.
Specifically, we trained a powerful noise predictor and tailored a
noise removal algorithm to effectively reduce the noise level in the
received signal and restore the device fingerprints. We used Wi-
Fi as a case study and created a testbed involving 6 commercial
off-the-shelf Wi-Fi dongles and a USRP N210 software-defined
radio (SDR) platform. We conducted experimental evaluations on
various SNR scenarios. The experimental results show that the
proposed algorithm can improve the classification accuracy by up
to 34.9%.

Index Terms—Denoising, Diffusion Model, Radio Frequency
Fingerprint Identification (RFFI), Transformer Wi-Fi

I. INTRODUCTION

RFFI is an emerging authentication approach by using
implicit hardware impairments in wireless transmitters, such
as oscillators, mixers, and power amplifiers [1], [2]. These
impairments come from the manufacturing process which will
deviate the nominal values of the hardware components slightly
from their specifications. The impairments are unique and can
be extracted as device identifiers, in a similar manner to the
biometric fingerprint authentication. As RFFI exploits the exist-
ing hardware impairments, this technique can be implemented
solely at the receiver end but does not require any modification
to the devices under test (DUTs). Therefore, it can be readily
applied to any IoT networks.

Deep learning has been widely adopted for RFFI [3], [4]
thanks to its superior feature extraction capability and classifi-
cation capability. As indicated in [5]–[7], the convolutional neu-
ral network (CNN) can significantly enhance the fingerprinting
performance, outperforming the traditional method which uses
hand-crafted features. Various deep learning techniques have
been proposed to address challenges in RFFI. In [8], the authors
proposed a supervised contrastive learning-based method to
address the channel variation. In [9], the authors proposed a
Transformer-based structure for overcoming the variable input
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length problem. The adversarial training method was proposed
in [10] to remove the impact of the receiver variations in RFFI.

SNR plays an essential role in RFFI. As the hardware
fingerprints are subtle, they can be easily buried in noise. For
example, the RFFI accuracy dropped from 97.1% to 23.12%
in [8] when SNR drops from 40 dB to 5 dB. Also, as
reported in [11], the RFFI performance dropped below 20%
when the SNR was around 20 dB. The noise problem poses
significant challenges for reliable RFFI. Data augmentation and
collaborative identification [9] can be employed to improve the
noise robustness of RFFI systems. Data augmentation improves
the diversity of the training datasets and collaborative identi-
fication integrates the deep learning predictions from multiple
packets [9] or receivers [10]. However, the RFFI accuracy under
low SNR is still limited.

Diffusion models (DMs) [12], [13] have recently emerged as
a powerful class of generative models, particularly effective for
data generation tasks. They can generate new data by iteratively
denoising Gaussian noise in a probabilistic manner. In addition,
DMs can also be employed for denoising. By initializing the
denoising process with a noisy input instead of pure Gaussian
noise, the trained model can iteratively remove noise in a
deterministic fashion. However, there is no research on using
DMs for denoising in RFFI.

In this paper, we employed the DMs to train a powerful
noise predictor for restoring the RFF. To adapt the pretrained
noise predictor to the RFFI system, we proposed an SNR
mapping algorithm that enables the noise predictor to accurately
remove noise and restore RFF from noisy observations. We
created a testbed consisting of commercial off-the-shelf Wi-
Fi dongles as DUTs and a USRP N210 SDR platform as the
receiver. Experimental evaluation was carried out. The technical
contributions of this paper are summarized as follows:

• We adapted the DM for denoising in the RFFI system to
enable effective noise removal and restore RFF degraded
by noise. To the best of the authors’ knowledge, this is
the first work to apply DM for denoising within RFF.

• We proposed a Transformed-based RFFI approach by
integrating the noise predictor. We designed an SNR
mapping method, which allows the noise predictor to
remove noise accurately and recover the underlying RFF
in a computationally efficient manner.

• We experimentally evaluated the performance of the pro-
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Fig. 1: System overview. (a) Model training stage. (b) Inference
stage.

posed system across a range of SNR levels. The exper-
imental results demonstrated that the proposed system
significantly enhanced identification accuracy, particularly
under low SNR conditions. Specifically, the classification
performance improved by 34.9% at an SNR of 0 dB.

The rest of this paper is organised as follows. Section II
presents the overview of the proposed RFFI system. Section III
presents the technical details of the proposed diffusion model
based denoising method. The details of the classifier used in this
work are presented in Section IV. The experimental evaluation
is presented in Section V. Finally, Section VI concludes this
paper.

II. SYSTEM OVERVIEW

Figure 1 depicts the system overview, which includes the
model training and inference stages. During the training stage,
each DUT sends packets that are captured by the receiver,
forming a training dataset. This dataset is then utilized for DM
training which yields a noise predictor model for noise removal.
A classifier is also trained to identify the DUTs.

A. Model Training Stage

1) Diffusion Model Training: The objective is to develop a
robust noise predictor capable of predicting noise contained in
signal and then use it to recover the RFF features of transmitted
signals distorted by noise. The DM training involves two steps,
i.e., forward process and reverse process. The forward process
involves adding noise to the training signals through a series
of timesteps, whereas in the reverse process, a deep learning
model is trained to learn how to remove the noise from the
noisy observation and recover the original clean signals. The
technical details will be presented in Section III.

2) Classifier Training: The objective is to develop a model
capable of extracting unique RFF features from the denoised
signals produced by the DM trained in the previous step. First,
we incorporate noise augmentation to increase the diversity
of the training dataset. Second, we propose SNR mapping to
determine the optimal denoising step t∗ based on the noise
conditions. Then, in the noise removal step, the noise predictor

receives the noisy signal x along with the optimal timestep t∗.
It processes these inputs to produce a denoised signal, which
is then used to train a classifier to identify the RFF. The details
of the classifier training will be presented in Section IV.

B. Inference Stage

In the inference stage, the system processes the incoming
signals to identify the DUT. The receiver will first capture
the packet that is sent from the DUT. The signal will be
extracted along with the SNR value of the current signal. The
SNR mapping module will estimate the optimal step for the
subsequent noise removal procedure. Upon the received signal
and SNR value, the noise predictor will remove noises and
restore the essential RFF. The classifier will make a prediction
on the denoised signal to predict the identity of the DUT.

III. RESTORE RFF FEATURE WITH DIFFUSION MODEL

In this section, we first explain how to train the DM to obtain
a noise predictor. Next, we detail the noise removal block,
which uses the noise predictor to restore signals from noisy
observations.

A. Diffusion Model Training

1) Forward Process: The forward process [12] of the DM
training aims to emulate the representation of a signal x in
different levels of SNR by progressively adding Gaussian noise
to the original data over a series of discrete timesteps.

As shown in Fig. 2(a), the forward process will produce a
series of noisy versions, {xt}Tt=1, of the original input, x0. The
noise power at each step is controlled by the variance schedule
denoted as {αt ∈ (0, 1)}Tt=1 and αt = 1−βt, then the forward
process is defined as:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I) , (1)

where N denotes a Gaussian distribution with mean
√
αtxt−1

and variance 1− αt. Furthermore, the forward process can be
expressed in a closed-form equation that directly computes the
noisy signal xt from the original signal x0, given as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where ᾱt =
∏t

i=1 αi represents the cumulative product of noise
scheduling parameters αi. The SNR of the signal at the timestep
t, γt, can be calculated as

γt =
ᾱt Ps,0

ᾱt Pn,0 + (1− ᾱt)
, (3)

where Ps,0 is the signal power of x0 and Pn,0 is the power of
noise in the original signal x0.

This process is crucial for subsequent reverse process to train
robust noise predictor. By understanding how noise progres-
sively distorts the signal, the model learns to effectively reverse
this process, removing noise while preserving the essential RF
features necessary for accurate device identification.
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Fig. 2: (a) The forward and reverse process. (b) The structure
of noise predictor.

2) Reverse Process: The objective of the reverse process is
to systematically remove the noise added during the forward
diffusion process, thereby reconstructing the original clean
signal from its noisy counterparts. In the reverse process, a
deep neural network is employed to predict the noise added in
the previous timestep.

In this work, we modified the Hierarchical Diffusion Trans-
former (HDT) proposed in [14], originally tailored for RF
signal generation, to serve as the backbone model for the noise
predictor, fθ, parameterized by θ. The model structure is shown
in Fig. 2(a). Different from the original HDT, we removed class
embedding as the class information during the denoising stage
is not available in RFFI. The core block is a Transformer-based
structure shown in the gray box in Fig. 2(a). This differs from
the original Transformer encoder [15], as it introduced multi-
head cross-attention that takes the embedded t as input and
allows the model to estimate the current noise level. The multi-
head self-attention (MHSA) captures autocorrelation features
from the noisy input and extracts high-level representations
implicit in the signal. The gray box in the diffusion step
embedding encodes the current diffusion step t which will
be used as input of MHSA. The Phase Modulation Encoding
takes a complex-valued signal as input and encodes positional
information in the complex domain.

As shown in the Fig 2(b). The reverse process involves
learning a series of denoising steps that progressively refine the
noisy data xT to the original clean signal x0. Mathematically,
the reverse process is modeled as a sequence of conditional
probability distributions pθ(xt−1|xt, t), where each distribution
aims to predict the noise ϵ added from the previous noisy signal
xt−1 during the forward process. The noise predicted by the
noise predictor at step t is ϵθ (xt, t), which is denoted as ϵθ too
for simplicity. During the DM training, the parameter of noise

predictor, i.e., θ, is updated by minimizing the mean squared
error between the actual noise ϵ and the predicted noise ϵθ. The
loss function is given as

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ (xt, t)∥2

]
. (4)

The previous signal after the denoising can be computed as

xt−1 =
√
αt−1

(
xt −

√
1− ᾱtϵθ√
ᾱt

)
+
√

1− ᾱt−1ϵθ. (5)

B. Noise Removal

The noise predictor obtained during the DM training phase
is used to remove noise from the received noisy signal. The
generative task starts by removing the noise from pure Gaussian
noise. Differently, in our task, we start from a noisy signal
which is from intermediate, denoted as state “xt∗”, as shown
in the Fig. 2(a). Denoted optimal intermediate step as t∗,
which will be detailed in Section IV-B. In this phase, the
received signal is refined iteratively over t′ steps. In the
DDPM framework, the denoising process, also referred to as
the sampling process, is performed iteratively from step t∗ to
step t0, encompassing the total steps t∗, i.e., t′ = t∗. This
method proves to be both time-consuming and computationally
intensive, posing challenges for real-time processing required
in RFFI systems.

To achieve efficient and precise noise removal, we adopted
the step-skipping method, which is originally proposed in
Denoising Diffusion Implicit Models (DDIM) [13]. In this
approach, the number of timesteps is selected such that t′ < t∗.
The timestep t is determined as follows:

ti = t∗ − i ·∆t (6)

where ∆t = t∗

t′ and i = 1, 2, ..., t′.
DDPM [12] employs a probabilistic sampling method by

adding noise at each denoising step. In contrast, DDIM sam-
pling [13] used in our approach focuses on deterministically
recovering the original signal without introducing additional
noise. This distinction is crucial for signal recovery tasks, where
the aim is to accurately reconstruct the original signal rather
than to generate new variations. During the noise removal
phase, the fθ obtained in minimise (5) is used to predict the
noise ϵθ based on the current noisy observation xt and timestep
t.

This deterministic denoising method ensures that noise is
removed without additional randomness, which is important for
refining the signal while preserving its RFF features necessary
for accurate device identification. For simplicity, we denote the
output of the noise removal as x′.

IV. CLASSIFIER DESIGN

A. Noise Augmentation

To enhance the robustness of the classifier against varying
noise conditions, we employ the augmentation method pro-
posed in [9]. This approach involves the addition of Gaussian
noise to different training batches to increase the diversity of
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Fig. 3: (a) The proposed Transformer-based classifier structure.
(b) The temporal encoder. (c) The class encoder. (d) Backbone
transformer encoder.

the entire dataset. Denoting the initial SNR of a training batch
as γinit, the addition of Gaussian noise will adjust the batch
SNR to a target value γtgt, where γtgt < γinit. By increasing
the diversity of the training dataset, the noise robustness can
be improved.

B. SNR Mapping

The SNR mapping step aims to determine the optimal
timestep t∗ that corresponds to the current SNR of the received
signal. This mapping ensures that the denoising operations
are accurately aligned with the specific noise level present
in the signal, allowing the model to apply the appropriate
denoising step tailored to that noise intensity. Without SNR
mapping, the noise predictor may insufficiently reduce the noise
or overestimate the noise, obscuring the essential recovery
of the RFF feature, which is necessary for accurate device
identification.

To accurately determine the optimal t∗, we define the SNR
map as γmap = {γ0, γ1, ..., γT } that can be computed using (3).
We determine t∗ by finding the timestep in which the SNR
value of the predefined noise schedule matches the current
SNR, given as

t∗ = argmin
t

|γmap (t)− γ|, (7)

where γ is the SNR of a signal input to the noise predictor.

C. Classifier Model Structure

We employed a Transformer-based classifier as shown in
Fig. 3(a), the classifier consists of the temporal encoder and
the class encoder. For both the temporal and class encoders,
the Transformer is used as the backbone.

1) Temporal Encoder: The temporal encoder processes the
signal throughout the time dimension, capturing the inherent
temporal patterns and dynamics. Inspired by the Vision Trans-
former (ViT) [16], a learnable class token is added to the input
sequence of image patches to provide a global representation,
aggregating information through self-attention for classification
decisions. Expanding on this, we introduce multiple learnable

(a) (b)

Fig. 4: The experiment devices. (a) USRP N210. (b) TP-Link
USB dongle.

class tokens, one for each class, as shown in Fig. 3(b). Class
tokens enhance a model’s capacity to aggregate temporal char-
acteristics, enabling concurrent recognition of patterns unique
to specific classes as well as temporal linkages within the
signal. The concatenation is given as

ZT = concat(C,x′) ∈ R(N+1)×M , (8)

where N denotes the total number of classes, C ∈ RN×M

represents the class tokens, x′ ∈ R1×M corresponds to the
input vector for the classifier, and M denotes the length of the
signal.

2) Class Encoder: Following temporal feature extraction,
the class encoder extracts relationships between different
classes. The class encoder is designed to refine and aggregate
the temporal features extracted by the temporal encoder to
facilitate accurate classification. As shown in Fig. 3(c), the
class encoder employs the Transformer block with the same
structure as the temporal encoder to model the inter-class
relationships and the extracted temporal features. Specifically,
the class encoder takes the output of the temporal encoder as
input and then performs a transpose on the input to obtain
ZC ∈ RM×(N+1) to enable the Transformer to effectively
capture class-wise dependencies.

The transpose operation will enable the Transformer to work
over different class tokens to extract key features to distinguish
different classes. This hierarchical processing, from temporal to
class-specific encoding, enhances the model’s ability to capture
both temporal dependencies and inter-class relationships.

3) Classification: After the class encoder, the output feature
map is passed through a flatten layer, which transforms the
multidimensional tensor into a one-dimensional vector. This
flattened vector serves as the input to the subsequent Multilayer
Perceptron (MLP) responsible for classification. The classifier
is trained using the cross-entropy loss.

V. EXPERIMENTAL EVALUATION

A. Data Collection and Experiments Setup

1) Experiment Devices: In this work, as shown in Fig. 4,
we employed a USRP N210 SDR as the receiver and 6 Wi-
Fi dongles as DUTs. During the data collection stage, the
DUTs were plugged into a Linux laptop which was connected
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to a Wi-Fi router to create a packet stream. At the receiver
end, the N210 was connected to a Linux laptop installed with
Picosence [17] to obtain the baseband signal. The sampling rate
was 20 Msamples/s.

2) Datasets: In this work, we use IEEE 802.11 as a case
study, specifically leveraging its legacy preamble which consists
of Short Training Sequence (STS) and Long Training Sequence
(LTS) for RFF extraction, as these standardized training se-
quences provide consistent and comparable features across all
compliant devices.

During the data collection, the USRP N210 and the WiFi
dongles were placed about 1 meter apart with line-of-sight
(LOS) present. Therefore, the SNR values of the collected
packets all exceed 40 dB. The channel was kept stationary to
maintain a fixed multipath channel. Under this configuration,
we can focus exclusively on noise effects. The different noise
levels are emulated by noise augmentation by adding artificial
noise in a simulation manner.

We collected 30,000 WiFi packets at 2.4 GHz on channel 13
for each DUT as the training dataset. For testing, we obtained
2,000 packets for each DUT on the same channel.

3) Training Configuration: We conducted deep learning
training on a PC equipped with an NVIDIA GeForce RTX
4090 GPU using PyTorch. The neural network parameters were
optimized with the Adamax optimizer, starting with an initial
learning rate of 0.0001 and a batch size of 32. We choose the
linear spaced βt range from 1 × 10−5 to 1.5 × 10−3. During
training, we halved the learning rate if the validation loss failed
to improve for 20 consecutive epochs. Training was stopped
when the validation loss showed no improvement for 30 epochs.

B. Denoise Performance

The SNR schedule across timesteps t can be computed using
(3) and is illustrated in Fig. 5. This noise schedule ensures that
the model is exposed to varying noise levels, allowing it to
learn effective noise removal strategies across a wide range
of signal quality conditions. The training process is designed
to progressively denoise the received signals, preserving the
essential features required for accurate RFF.

Fig. 6 exemplifies the waveforms of the original signal (40
dB), the noisy signal (5 dB), and the denoised signal from
5 dB. The noisy signal, shown in Fig. 6(b) shows significant

fluctuations and show significant information loss compared to
the original signal. The denoised signal, shown in Fig. 6(c)
reveals a substantial improvement, with noise significantly
removed and the signal shape more closely resembling that
of the original signal. The visual comparison highlights the
efficacy of the DM in reconstructing the signal, even under
moderate noise conditions.

Fig. 7 shows the correlation between the noise signal and
original clean signal, as well as the correlation between the
denoised signal and the original signal, at different SNR levels
(0 dB to 40 dB). When the SNR is below 20 dB, the DM
effectively recovers the original signal, maintaining high cor-
relation between the denoised and original signals even under
challenging conditions (0 dB). As SNR rises above 20 dB,
noisy signal correlation increases and can match or surpass
denoised signal correlation. This is because when the SNR is
high, the noise is minimal compared to the signal strength,
which results in a marginally lower correlation for the denoised
signal compared to the noisy one.

The analysis of both waveform comparisons and correlation
results indicates that the DM effectively mitigates noise and
restores signal quality, especially under low to moderate SNR
conditions. As the SNR increases and the noise becomes less
significant, the benefit of denoising diminishes slightly, as
reflected in the correlation metrics. Nevertheless, the overall
results demonstrate that the DM is highly capable of restoring
RF signals for fingerprinting purposes, particularly in challeng-
ing noise environments.

C. Device Identification

In this section, we present the device identification accuracy
results of our proposed method. For comparison, we trained
a baseline model that incorporates noise augmentation but
excludes a noise removal step, meaning no noise removal is
performed. The rest of the setup is the same as the proposed
method in this paper.

The accuracy comparison is illustrated in Fig. 8. Our pro-
posed approach consistently outperforms the baseline model,
when the SNR is below 20 dB. In particular, at an SNR of
0 dB, the proposed model achieves a 34.9% improvement
over the baseline. This indicates that the proposed method
can significantly enhance the robustness to noise. As the
SNR increases beyond 20 dB, the accuracy of both models
converges, indicating that the benefit of denoising diminishes
when the noise level is low. This convergence is expected, as
the impact of noise becomes negligible at higher SNRs, leading
to similar performance in both cases. Those observations align
with the correlation relationship shown in Fig. 7.

VI. CONCLUSION

In this paper, we present a noise-robust RFFI system by
employing a diffusion model to remove noise and restore RFF
features. To adapt the diffusion model for noise mitigation
within the RFFI system, we propose an SNR mapping method
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that enables the pretrained noise predictor to estimate and elim-
inate noise from the signal. To validate the proposed system,
we conducted real-world experiments using Wi-Fi as a case
study. The experiments demonstrate that the proposed method
effectively removes noise and restores RFF. Compared to the
simple noise augmentation method, our approach improves the
RFFI classification accuracy by up to 34.9%.
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